Chapter 17: Binomial option pricing Th. Warin

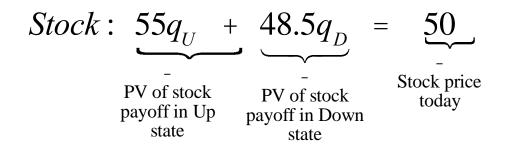
ONE-PERIOD OPTION PRICING

The general case

One-period binomial: State Prices

- **Stock** with price S₀ today and price:
 - * $S_{U_p} = S_0^*U$ in <u>up state</u> and
 - $* S_{Down} = S_0^* D$ in <u>down state</u>
- \ast U and D are one-plus-return on the stock.
 - * For example, U=1+10%, D=1-3%.
- * U and D stand for <u>one-plus</u> the return

One-period binomial, numerical example


	A	В	С	D	E
2	Up, U	1.10			
3	Down, D	0.97			
4					
5	Initial stock price	50.00			
6	Interest rate, R	1.06			
7	Exercise price	50.00			
8					
9		Stock price	e		
10				55.00	< =\$B\$11*B2
11		50.00	<		
12				48.50	< =\$B\$11*B3
13					
14		Call optior	า		
15				5.00	< =MAX(D10-\$B\$7,0)
16		???.	<		
17				0.00	< =MAX(D12-\$B\$7,0)

In this example: $S_0 = 50$, U (up move) = 1.10, D (down move) = 0.97, and R (1+interest) = 1.06.

The call option has exercise price of 50.

State prices: Alternative interpretation of binomial model

- * Denote by q_U the price today of \$1 in the <u>up</u> state at date 1
- Denote by q_D the price today of \$1 in the <u>down state</u> at date 1
- The two state prices should price all assets including stock and bond:

Solving for q_U and q_D using stock prices

$$50 = 55q_U + 48.5q_D$$

$$q_U = \frac{R - D}{R^*(U - D)} = \frac{1.06 - 0.97}{1.06^*(1.10 - 0.97)} = 0.6531$$

$$q_D = \frac{U - R}{R^*(U - D)} = \frac{1.1 - 1.06}{1.06^*(1.10 - 0.97)} = 0.2903$$

Those are not the risk-neutral probability!

State prices depend only on U, D, R Not on stock price S_0

$$50 = 55q_{U} + 48.5q_{D} = 50 * U * q_{U} + 50 * D * q_{D}$$

or:

$$1 = \underbrace{1.10q_{U}}_{U} + \underbrace{0.97q_{D}}_{D}$$

$$q_{U} = \frac{R - D}{R * (U - D)} = \frac{1.06 - 0.97}{1.06 * (1.10 - 0.97)} = 0.6531$$

$$q_{D} = \frac{U - R}{R * (U - D)} = \frac{1.1 - 1.06}{1.06 * (1.10 - 0.97)} = 0.2903$$

In Excel (note check in rows 11/12)

	A	В	С							
1	DERIVING THE STATE PRICES									
2	Up, U	1.10								
3	Down, D	0.97								
4	Interest rate, R	1.06								
5										
6	State prices									
7	<mark>q_U</mark>	0.6531	< =(B4-B3)/(B4*(B2-B3))							
8	9 _D	0.2903	< =(B2-B4)/(B4*(B2-B3))							
9										
10	Check: Confirm that state prices actually price the stock and the bond									
11	Pricing the stock: $1 = q_U^*U + q_D^*D$?	1	< =B7*B2+B8*B3							
12	Pricing the bond: $1/R = q_U + q_D$?	1.06	< =1/(B7+B8)							

Using state prices to price the call and put

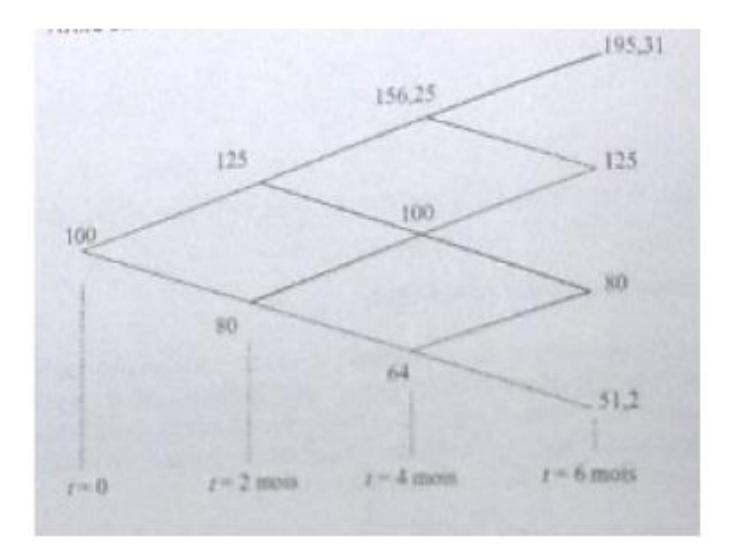
(TV	G WITH : NO-DAT	STATE PRICES IN A ONE-PERIOD									
•	VO-DAT										
•											
P	1.10										
, D	0.97										
st rate, R	1.06										
stock price, S	50.00										
n exercise price, X	50.00										
prices											
	0.6531	< =(B4-B3)/(B4*(B2-B3))									
	0.2903	< =(B2-B4)/(B4*(B2-B3))									
g the call and the put											
rice	3.2656	< =B9*MAX(B5*B2-B6,0)+B10*MAX(B5*B3-B6,0)									
ice	0.4354	< =B9*MAX(B6-B5*B2,0)+B10*MAX(B6-B5*B3,0)									
all parity											
+ put	50.4354	< =B5+B14									
PV(X)	50.4354	< =B13+B6/B4									
· ·											
about PV(X) in put-call parity:	lard Black-S	choles framework), PV(X) = X*Exp(-r*T). Because									
	ice ce all parity + put PV(X) about PV(X) in put-call parity:	ice 3.2656 ice 0.4354 all parity 50.4354 + put 50.4354 PV(X) 50.4354 about PV(X) in put-call parity: 50.4354									

Using the state prices gives the same option prices (rows 13/14)

Using risk-neutral probabilities

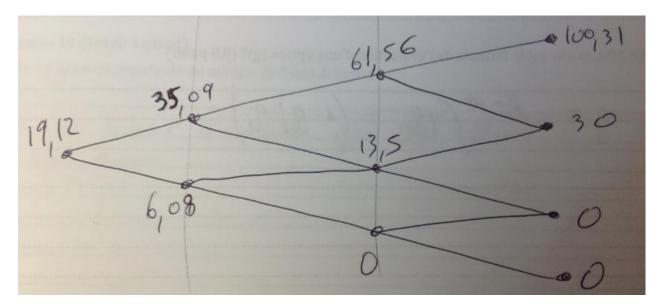
MULTIPLE PERIODS OPTION PRICING

- We seek to evaluate a call at 6 months (3 periods of 2 months) with the exercise price being X = 95.
- The underlying asset is listed currently at \$100.
- The risk-free interest rate is r = 2%.
- The factors U and D are set at 1.25 and 0.8.


 The value of the option is the expected value of the different states (Up and Down) weighted for one unit of risk (measured by the risk-free rate) :

$$g = R^{-\Delta t} \left(q g_u + (1 - q) g_d \right)$$

 The risk-neutral probability can be represented by the following formula :


$$q = \frac{R^{\Delta t} - d}{u - d} \qquad \begin{cases} q = \frac{1,02^{1/6} - 0,8}{1,25 - 0,8} = 0,4518\\ (1 - q) = 0,5482 \end{cases}$$

with $\Delta t = T / n$ (T is the time of option exercise in years, and n is the number of subdivisions of T. For instance, if the time of option exercise is 6 months, then T=1/2, and if the 6 months are divided into 3 periods of 2 months, then n=3. Hence, $\Delta t = 1/6$)

• With an exercise price of X=95 and:

$$g = R^{-\Delta t} \left(q g_u + (1-q) g_d \right)$$

• 61,56=1,02^-(1/6)*(0,4518*100,31+(1-0,4518)*30)

FROM BINOMIAL OPTION PRICING TO BLACK AND SCHOLES

Convergence of binomial to Black-Scholes formula

* Use an approximation to the lognormal

$$\Delta t = T / n \qquad \qquad R = e^{r\Delta t}$$
$$U = 1 + up = e^{\sigma\sqrt{\Delta t}} \qquad \qquad D = 1 + down = e^{-\sigma\sqrt{\Delta t}}$$

* As $\Delta t \rightarrow 0$, this converges to the lognormal

	А	В	С					
1	BLACK-SCHOLES AND BINOMIAL PRICING							
2	S	60	Current stock price					
3	Х	50	Option exercise price					
4	Т	0.5000	Time to option exercise (in years)					
5	r	8%	Annual interest rate					
6	Sigma	30%	Riskiness of stock					
7	n	20	Number of subdivisions of T					
8								
9	$\Delta t = T/n$	0.0250	< =B4/B7					
10	Up, U	1.0486	< =EXP(B6*SQRT(B9))					
11	Down, D	0.9537	< =EXP(-B6*SQRT(B9))					
12	Interest rate, R	1.0020	< =EXP(B5*B9)					
13								
14	Binomial European call	12.8055	< =binomial_eur_call(B10,B11,B12,B2,B3,B7)					
15	Black-Scholes call	12.8226	< =BSCall(B2,B3,B4,B5,B6)					

In this spreadsheet, we use binomial_eur_call and compare it to the BSCall function from Chapter 19 (OK, so we're a little ahead of ourselves!). As you can see, they are very close.

	А	В	С	D	E	E	F	G	Н		J	K
	BLACK-S	SCHOLE	S AND BIN	OMIAL	PRICI	NG:						
4	CONVERGENCE											
1												
2	S X		Option exercise									
4	Т		Time to option		vears)			- Nov	v we	let /	$T \rightarrow$	0.
5	r		Annual interest		yearsy					100 2		•,
6	Sigma		Riskiness of sto					and	you	can	600	the
7	n		Number of sub		г				yuu	Lan	366	
8												
9	t = T/n	0.0250	< =B4/B7					CON	verg	ence	2.	
	Up, U		< =EXP(B6*S	SQRT(B9))								
	Down, D		< =EXP(-B6*									
12	Interest rate, R	1.0020	< =EXP(B5*E	39)								
13												
	Binomial European call		< =binomial_			2,B2,B3	3,B7)					
	Black-Scholes call	12.8226	< =BSCall(B2	2,B3,B4,B5,E	36)							
16												
17	Data table: Binomia	al price v	s Black-Sch	oles								
	n, number of	Binomial	Block									
	subdivisions	Binomial	Black-									
18	of T	price	Scholes price									
19		12.8055		< Data tab	le heade	rs						
20	10	12.8593										
21	50	12.8108				onver	gence	of Binomia	I to Black	-Scholes		
22	75	12.8238		12.87	7							
23	100	12.8255										
24	125	12.8251	12.8226	12.86	- 🔶							
25	150	12.8240							Binor			
26	175	12.8226		12.85					price			
27	200	12.8205							Black	<-Scholes price	9	
28	225	12.8204		12.84	- \				L			
29 30	250	12.8230										
30 31	275 300	12.8243 12.8243		12.83	- \							
31	300	12.8243										
		12.8232		12.82		1						
33 34	350 375	12.8210				/						
35	400	12.8238		12.81	↓ ↓							
36	400	12.8236		12.01					n numh	er of subdivi	sions of T	
37	450	12.8221	12.8226	12.80					n, numb			
38	475	12.8223			0 50	100	150	200 250	300 35	50 400	450 500	
1 39	500	12.8236			0 50	100	150	200 230	300 30	JU 400	+50 500	┍━┛┛
			12.0220		vvann	DILLO	Jiiiai	ļ	ļ	1	Ļ	

FM