8 Chapter 8: Geospatial Data Analysis
8.1 Introduction
Geospatial data analysis involves harnessing spatial information to explore, model, and interpret spatial relationships and phenomena across geographic spaces. It plays a pivotal role in various fields, such as urban planning, environmental management, public health, transportation, and economic geography. Through rigorous analytical methods, practitioners can uncover hidden patterns, detect clusters, analyze spatial interactions, and develop predictive models. This chapter provides an extensive overview of essential analytical techniques in geospatial data analysis using R and Python, empowering analysts to extract meaningful insights from complex spatial data effectively.
8.2 Exploratory Spatial Data Analysis (ESDA)
Exploratory Spatial Data Analysis (ESDA) is the initial phase in spatial analysis, dedicated to visualizing spatial distributions, detecting spatial clusters or outliers, and formulating hypotheses regarding spatial relationships. ESDA helps analysts understand underlying spatial patterns before employing more sophisticated statistical modeling approaches.
Spatial Distribution
Examining spatial distribution is critical for identifying broad spatial patterns such as clustering or dispersion.
Example in R:
library(sf)
# Load spatial data
<- st_read("data/points.shp")
points
# Visualize spatial distribution
plot(st_geometry(points), pch=20, col="blue", main="Spatial Distribution of Points")
Example in Python:
import geopandas as gpd
import matplotlib.pyplot as plt
# Load spatial data
= gpd.read_file("data/points.shp")
points
# Plot spatial distribution
='o', color='blue', markersize=5, figsize=(8,6))
points.plot(marker"Spatial Distribution of Points")
plt.title("Longitude")
plt.xlabel("Latitude")
plt.ylabel( plt.show()
Kernel Density Estimation (KDE)
Kernel Density Estimation (KDE) visualizes and quantifies the density of spatial points, providing insights into the intensity of spatial phenomena, such as crime incidents, disease outbreaks, or resource distribution.
Example in R:
library(spatstat)
# Define study window
<- owin(xrange=range(points$geometry), yrange=range(points$geometry))
window
# Compute KDE
<- density(ppp(points$geometry[[1]], points$geometry[[2]], window=window))
kde
# Visualize KDE
plot(kde, main="Kernel Density Estimation")
points(points$geometry, pch=20, cex=0.5, col='red')
Example in Python:
import geopandas as gpd
from sklearn.neighbors import KernelDensity
import numpy as np
import matplotlib.pyplot as plt
= gpd.read_file("data/points.shp")
points = np.vstack([points.geometry.x, points.geometry.y]).T
coords
# Fit KDE model
= KernelDensity(bandwidth=0.01).fit(coords)
kde = np.exp(kde.score_samples(coords))
density
# Plot KDE
= plt.subplots(figsize=(8,6))
fig, ax =ax, alpha=0.5, markersize=20, c=density, cmap='Reds')
points.plot(ax"Kernel Density Estimation")
plt.title( plt.show()
8.3 Spatial Autocorrelation
Spatial autocorrelation quantifies how similar or dissimilar values are spatially clustered, helping analysts identify underlying spatial processes and dependencies.
Global Spatial Autocorrelation
Global indicators, such as Moran’s I, evaluate overall spatial clustering, indicating if data exhibit spatial randomness, dispersion, or clustering.
Example in R:
library(spdep)
# Create spatial weights
<- poly2nb(points)
neighbors <- nb2listw(neighbors)
weights
# Compute Moran's I
<- moran.test(points$variable, weights)
morans_i print(morans_i)
Example in Python:
import geopandas as gpd
import libpysal
from esda.moran import Moran
= gpd.read_file("data/points.shp")
points = libpysal.weights.Queen.from_dataframe(points)
weights
# Calculate Moran's I
= Moran(points['variable'], weights)
moran print(f"Moran's I: {moran.I}, p-value: {moran.p_norm}")
Local Spatial Autocorrelation
Local Indicators of Spatial Association (LISA) pinpoint specific areas exhibiting statistically significant clustering or spatial outliers, enabling localized interventions.
Example in R:
# Calculate LISA
<- localmoran(points$variable, weights)
lisa
# Plot LISA clusters
$lisa_cluster <- factor(ifelse(lisa[,4] < 0.05, "Significant", "Non-significant"))
pointsplot(points["lisa_cluster"], main="Local Moran's I Clusters")
Example in Python:
from esda.moran import Moran_Local
# Calculate LISA
= Moran_Local(points['variable'], weights)
lisa 'lisa_sig'] = lisa.p_sim < 0.05
points[
# Visualize significant clusters
='lisa_sig', categorical=True, legend=True,
points.plot(column='Set1', markersize=20)
cmap"Local Moran's I Significant Clusters")
plt.title( plt.show()
8.4 Spatial Regression and Modeling
Spatial regression models explicitly incorporate spatial dependence, resulting in enhanced accuracy compared to traditional regression methods.
Spatial Lag Model
Spatial lag models capture spatial dependencies by incorporating spatially lagged dependent variables, reflecting how neighboring observations influence outcomes.
Example in R:
library(spatialreg)
# Spatial lag model
<- lagsarlm(variable ~ predictor, data=points, listw=weights)
lag_model summary(lag_model)
Example in Python:
from spreg import ML_Lag
# Spatial lag model
= ML_Lag(points[['variable']].values, points[['predictor']].values, w=weights)
lag_model print(lag_model.summary)
Spatial Error Model
Spatial error models account for spatially correlated errors in regression analysis, addressing omitted variable bias or measurement errors that exhibit spatial structure.
Example in R:
# Spatial error model
<- errorsarlm(variable ~ predictor, data=points, listw=weights)
error_model summary(error_model)
Example in Python:
from spreg import ML_Error
# Spatial error model
= ML_Error(points[['variable']].values, points[['predictor']].values, w=weights)
error_model print(error_model.summary)
8.5 Network Analysis
Network analysis evaluates spatial phenomena through connectivity and accessibility measures, significantly contributing to transportation planning, infrastructure assessment, and urban development.
Shortest Path Analysis
Calculating shortest paths optimizes transportation networks, emergency response routes, or logistic planning.
Example using Python (OSMNX):
import osmnx as ox
# Retrieve road network
= ox.graph_from_place("Montreal, Canada", network_type='drive')
G
# Define origin and destination coordinates
= ox.distance.nearest_nodes(G, X=-73.5673, Y=45.5017) # Example origin node
origin = ox.distance.nearest_nodes(G, X=-73.5852, Y=45.5222) # Example destination node
destination
# Compute shortest path
= ox.shortest_path(G, origin, destination, weight='length')
route
# Plot shortest route
=4, node_size=0, bgcolor='k') ox.plot_graph_route(G, route, route_linewidth
8.6 Geostatistical Analysis
Geostatistics employs spatial interpolation techniques to predict unknown values from observed data, critical in fields such as environmental science, hydrology, and geology.
Kriging
Kriging interpolation predicts values at unsampled locations by considering spatial correlation structures.
Example in R:
library(gstat)
# Variogram modeling
<- variogram(variable ~ 1, data=points)
vario <- fit.variogram(vario, vgm("Sph"))
vario_fit
# Kriging interpolation
<- krige(variable ~ 1, points, newdata=grid, model=vario_fit)
kriged plot(kriged, main="Kriging Interpolation")
Inverse Distance Weighting (IDW)
IDW assigns values to unknown locations based on weighted averages of known values, inversely proportional to distance.
Python Example:
from pyinterpolate import inverse_distance_weighting
# Perform IDW interpolation
= inverse_distance_weighting(known_points=points[['x','y','variable']].values,
idw_result =grid[['x','y']].values, power=2)
unknown_points
# Visualize IDW results
'x'], grid['y'], c=idw_result, cmap='RdYlBu', s=10)
plt.scatter(grid["IDW Interpolation")
plt.title(='Estimated Value')
plt.colorbar(label plt.show()
8.7 Best Practices in Spatial Analysis
Implementing best practices enhances analytical robustness and reliability:
- Clearly define objectives: Establish clear analytical goals to guide appropriate methodological choices.
- Account for spatial autocorrelation: Evaluate spatial dependencies to ensure the accuracy of modeling results.
- Validate rigorously: Employ cross-validation and residual diagnostics to verify analytical quality.
8.8 Conclusion
Geospatial data analysis provides powerful methods for interpreting complex spatial phenomena. By integrating techniques outlined in this chapter, including exploratory analysis, spatial modeling, network evaluation, and geostatistical interpolation using R and Python, analysts can deeply explore, accurately model, and effectively communicate spatial insights. Proficiency in these analytical tools strengthens decision-making processes, ultimately facilitating informed interventions and strategies in diverse spatially oriented disciplines.