Learn how to retrieve data from spiR and produce a visual.
This course will teach you how to use the spiR package and create impactful visualizations with the Social Progress Index data.
spi_2014$value <- as.numeric(spi_2014$value)
kable(spi_2014)%>%
scroll_box(width = "100%", height = "200px")
countryName | var_code | var_year | var_indicator | value |
---|---|---|---|---|
Brazil | BRA | 2014 | SPI | 73.59 |
Canada | CAN | 2014 | SPI | 86.97 |
China | CHN | 2014 | SPI | 61.58 |
France | FRA | 2014 | SPI | 87.10 |
South Africa | ZAF | 2014 | SPI | 64.65 |
United States | USA | 2014 | SPI | 84.74 |
Brazil | BRA | 2015 | SPI | 73.45 |
Canada | CAN | 2015 | SPI | 87.17 |
China | CHN | 2015 | SPI | 62.38 |
France | FRA | 2015 | SPI | 87.19 |
South Africa | ZAF | 2015 | SPI | 65.38 |
United States | USA | 2015 | SPI | 84.71 |
Brazil | BRA | 2016 | SPI | 74.12 |
Canada | CAN | 2016 | SPI | 87.25 |
China | CHN | 2016 | SPI | 62.89 |
France | FRA | 2016 | SPI | 87.48 |
South Africa | ZAF | 2016 | SPI | 66.19 |
United States | USA | 2016 | SPI | 85.09 |
Brazil | BRA | 2017 | SPI | 72.80 |
Canada | CAN | 2017 | SPI | 87.79 |
China | CHN | 2017 | SPI | 63.73 |
France | FRA | 2017 | SPI | 87.60 |
South Africa | ZAF | 2017 | SPI | 66.74 |
United States | USA | 2017 | SPI | 84.18 |
Brazil | BRA | 2018 | SPI | 72.66 |
Canada | CAN | 2018 | SPI | 88.60 |
China | CHN | 2018 | SPI | 64.16 |
France | FRA | 2018 | SPI | 87.69 |
South Africa | ZAF | 2018 | SPI | 66.56 |
United States | USA | 2018 | SPI | 83.85 |
Brazil | BRA | 2019 | SPI | 72.87 |
Canada | CAN | 2019 | SPI | 88.81 |
China | CHN | 2019 | SPI | 64.54 |
France | FRA | 2019 | SPI | 87.79 |
South Africa | ZAF | 2019 | SPI | 67.44 |
United States | USA | 2019 | SPI | 83.62 |
ggplot(data = spi_2014, aes(x = var_year, y = value, color = countryName)) +
geom_line() +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Social Progress Index of different countries since 2014",
x = "Years",
y = "Social Progress Index Score",
colour = "Countries",
caption = "Source: Nüance-R")
spi_2019$value <- as.numeric(spi_2019$value)
kable(spi_2019)%>%
scroll_box(width = "100%", height = "200px")
countryName | var_code | var_year | var_indicator | value |
---|---|---|---|---|
Brazil | BRA | 2019 | SPI | 72.87 |
Canada | CAN | 2019 | SPI | 88.81 |
China | CHN | 2019 | SPI | 64.54 |
France | FRA | 2019 | SPI | 87.79 |
South Africa | ZAF | 2019 | SPI | 67.44 |
United States | USA | 2019 | SPI | 83.62 |
ggplot(data = spi_2019, aes(x = countryName, y = value, fill = countryName)) +
geom_col() +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Social Progress Index of different countries in 2019",
x = "Countries",
y = "Social Progress Index Score",
colour = "Countries",
caption = "Source: Nüance-R")
For attribution, please cite this work as
Warin (2020, Jan. 24). Thierry Warin, PhD: [API] spiR: Application. Retrieved from https://warin.ca/posts/api-spir-application/
BibTeX citation
@misc{warin2020[api], author = {Warin, Thierry}, title = {Thierry Warin, PhD: [API] spiR: Application}, url = {https://warin.ca/posts/api-spir-application/}, year = {2020} }