Learn how to reshape and subset your data.
The package tidyverse
will be used for this course.
To combine vectors into data frame:
fruits <- c("Banana","Apple", "Peach")
fruits
[1] "Banana" "Apple" "Peach"
A vector called “a” containing the values 1,2,3 is created.
numbers <- c(2, 5, 3)
numbers
[1] 2 5 3
A vector called “b” containing the values 4,5,6 is created.
shoppingcart <- data.frame(Fruits = fruits, Values = numbers)
Fruits | Values |
---|---|
Banana | 2 |
Apple | 5 |
Peach | 3 |
A dataframe containing a column called “Fruits” equal to the vector “fruits” and another called “Values” equal to the vector “numbers”.
Another optimized way of doing it, is by creating the vectors directly inside the function:
basket <- data.frame(Fruits = c("Banana","Apple", "Peach"), Values = c(2, 5, 3))
A dataframe is created with a column called “Fruits” containing “Banana”,“Apple”, “Peach” and another called “Values” containing the values: 2, 5, 3.
Fruits | Values |
---|---|
Banana | 2 |
Apple | 5 |
Peach | 3 |
To order rows by values of a column.
To order values from low to high:
basket <- arrange(basket, Values)
Fruits | Values |
---|---|
Banana | 2 |
Peach | 3 |
Apple | 5 |
The desc() function allow to order values from high to low:
basket <- arrange(basket, desc(Values))
Fruits | Values |
---|---|
Apple | 5 |
Peach | 3 |
Banana | 2 |
Let’s create a new dataframe to show you the use of the following functions:
df <- data.frame(country=c("USA", "CA", "FR","USA", "CA", "FR","USA", "CA", "FR"),
date= c(2017, 2017, 2017, 2018, 2018, 2018, 2019, 2019, 2019),
GDP=c(2700,1500,4200,2800,1600,4300,2900,1700,4400))
country | date | GDP |
---|---|---|
USA | 2017 | 2700 |
CA | 2017 | 1500 |
FR | 2017 | 4200 |
USA | 2018 | 2800 |
CA | 2018 | 1600 |
FR | 2018 | 4300 |
USA | 2019 | 2900 |
CA | 2019 | 1700 |
FR | 2019 | 4400 |
A dataframe called “df” is created containing a column “country” with USA, CA, FR, a column “date” with 2017, 2018, 2019 and a column “GDP” with 2700, 1500, 4200.
dfYear <- spread(df, date, GDP)
country | 2017 | 2018 | 2019 |
---|---|---|---|
CA | 1500 | 1600 | 1700 |
FR | 4200 | 4300 | 4400 |
USA | 2700 | 2800 | 2900 |
dfCountry <- spread(df, country, GDP)
date | CA | FR | USA |
---|---|---|---|
2017 | 1500 | 4200 | 2700 |
2018 | 1600 | 4300 | 2800 |
2019 | 1700 | 4400 | 2900 |
dfYear <- gather(dfYear, "date", "GDP", 2:4)
country | date | GDP |
---|---|---|
CA | 2017 | 1500 |
FR | 2017 | 4200 |
USA | 2017 | 2700 |
CA | 2018 | 1600 |
FR | 2018 | 4300 |
USA | 2018 | 2800 |
CA | 2019 | 1700 |
FR | 2019 | 4400 |
USA | 2019 | 2900 |
Note: the number 2:4 in the gather()
function refers to the columns that will be transformed in rows to create the column date.
dfCountry <- gather(dfCountry, "country", "GDP", 2:4)
date | country | GDP |
---|---|---|
2017 | CA | 1500 |
2018 | CA | 1600 |
2019 | CA | 1700 |
2017 | FR | 4200 |
2018 | FR | 4300 |
2019 | FR | 4400 |
2017 | USA | 2700 |
2018 | USA | 2800 |
2019 | USA | 2900 |
Note: the numbers 2:4 in the gather()
function refers to the second, third and fourth columns (CA, FR, USA) that will be transformed in rows.
To separate one column into several:
df <- separate(df, date, c("year", "month", "day"), sep = "-")
country | year | month | day | GDP |
---|---|---|---|---|
USA | 2017 | NA | NA | 2700 |
CA | 2017 | NA | NA | 1500 |
FR | 2017 | NA | NA | 4200 |
USA | 2018 | NA | NA | 2800 |
CA | 2018 | NA | NA | 1600 |
FR | 2018 | NA | NA | 4300 |
USA | 2019 | NA | NA | 2900 |
CA | 2019 | NA | NA | 1700 |
FR | 2019 | NA | NA | 4400 |
The column “date” will be separated into three columns “year”, “month”, “day”. As the date contains the symbol “-” (2019-09-05), it will be used to seperate the column into 3 columns.
To unite several columns into one.
dataDash <- unite(df, "date", c("year", "month", "day"), sep="-")
country | date | GDP |
---|---|---|
USA | 2017-NA-NA | 2700 |
CA | 2017-NA-NA | 1500 |
FR | 2017-NA-NA | 4200 |
USA | 2018-NA-NA | 2800 |
CA | 2018-NA-NA | 1600 |
FR | 2018-NA-NA | 4300 |
USA | 2019-NA-NA | 2900 |
CA | 2019-NA-NA | 1700 |
FR | 2019-NA-NA | 4400 |
dataSlash <- unite(df, "date", c("year", "month", "day"), sep="/")
country | date | GDP |
---|---|---|
USA | 2017/NA/NA | 2700 |
CA | 2017/NA/NA | 1500 |
FR | 2017/NA/NA | 4200 |
USA | 2018/NA/NA | 2800 |
CA | 2018/NA/NA | 1600 |
FR | 2018/NA/NA | 4300 |
USA | 2019/NA/NA | 2900 |
CA | 2019/NA/NA | 1700 |
FR | 2019/NA/NA | 4400 |
Let’s work with the built-in dataset “iris”:
data("iris")
To subset observations (rows), here some functions.
To extract rows that meet logical criteria.
subset7 <- filter(iris, Sepal.Length > 7.7)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
7.9 | 3.8 | 6.4 | 2 | virginica |
The rows where “Sepal.Length” is is greater than 7.7 will be kept.
subset2 <- filter(iris, Sepal.Width < 2.3)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.0 | 2.0 | 3.5 | 1.0 | versicolor |
6.0 | 2.2 | 4.0 | 1.0 | versicolor |
6.2 | 2.2 | 4.5 | 1.5 | versicolor |
6.0 | 2.2 | 5.0 | 1.5 | virginica |
The rows where “Sepal.Width” is less than 2.3 will be kept.
You can combine multiple logical operator by storing the result in a subset data.
subsetV <- filter(iris, Species == "versicolor" & Petal.Length >= 4.1 & Petal.Length <= 4.2)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.9 | 3.0 | 4.2 | 1.5 | versicolor |
5.8 | 2.7 | 4.1 | 1.0 | versicolor |
5.6 | 3.0 | 4.1 | 1.3 | versicolor |
5.6 | 2.7 | 4.2 | 1.3 | versicolor |
5.7 | 3.0 | 4.2 | 1.2 | versicolor |
5.7 | 2.9 | 4.2 | 1.3 | versicolor |
5.7 | 2.8 | 4.1 | 1.3 | versicolor |
The rows where “Species” is exactly equal to “versicolor” and Petal.Length is between 4.1 and 4.2 will be kept.
To remove duplicate rows:
distinct(iris)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
4.6 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.6 | 1.4 | 0.2 | setosa |
5.4 | 3.9 | 1.7 | 0.4 | setosa |
4.6 | 3.4 | 1.4 | 0.3 | setosa |
5.0 | 3.4 | 1.5 | 0.2 | setosa |
4.4 | 2.9 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.1 | setosa |
5.4 | 3.7 | 1.5 | 0.2 | setosa |
4.8 | 3.4 | 1.6 | 0.2 | setosa |
4.8 | 3.0 | 1.4 | 0.1 | setosa |
4.3 | 3.0 | 1.1 | 0.1 | setosa |
5.8 | 4.0 | 1.2 | 0.2 | setosa |
5.7 | 4.4 | 1.5 | 0.4 | setosa |
5.4 | 3.9 | 1.3 | 0.4 | setosa |
5.1 | 3.5 | 1.4 | 0.3 | setosa |
5.7 | 3.8 | 1.7 | 0.3 | setosa |
5.1 | 3.8 | 1.5 | 0.3 | setosa |
5.4 | 3.4 | 1.7 | 0.2 | setosa |
5.1 | 3.7 | 1.5 | 0.4 | setosa |
4.6 | 3.6 | 1.0 | 0.2 | setosa |
5.1 | 3.3 | 1.7 | 0.5 | setosa |
4.8 | 3.4 | 1.9 | 0.2 | setosa |
5.0 | 3.0 | 1.6 | 0.2 | setosa |
5.0 | 3.4 | 1.6 | 0.4 | setosa |
5.2 | 3.5 | 1.5 | 0.2 | setosa |
5.2 | 3.4 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.6 | 0.2 | setosa |
4.8 | 3.1 | 1.6 | 0.2 | setosa |
5.4 | 3.4 | 1.5 | 0.4 | setosa |
5.2 | 4.1 | 1.5 | 0.1 | setosa |
5.5 | 4.2 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.2 | 1.2 | 0.2 | setosa |
5.5 | 3.5 | 1.3 | 0.2 | setosa |
4.9 | 3.6 | 1.4 | 0.1 | setosa |
4.4 | 3.0 | 1.3 | 0.2 | setosa |
5.1 | 3.4 | 1.5 | 0.2 | setosa |
5.0 | 3.5 | 1.3 | 0.3 | setosa |
4.5 | 2.3 | 1.3 | 0.3 | setosa |
4.4 | 3.2 | 1.3 | 0.2 | setosa |
5.0 | 3.5 | 1.6 | 0.6 | setosa |
5.1 | 3.8 | 1.9 | 0.4 | setosa |
4.8 | 3.0 | 1.4 | 0.3 | setosa |
5.1 | 3.8 | 1.6 | 0.2 | setosa |
4.6 | 3.2 | 1.4 | 0.2 | setosa |
5.3 | 3.7 | 1.5 | 0.2 | setosa |
5.0 | 3.3 | 1.4 | 0.2 | setosa |
7.0 | 3.2 | 4.7 | 1.4 | versicolor |
6.4 | 3.2 | 4.5 | 1.5 | versicolor |
6.9 | 3.1 | 4.9 | 1.5 | versicolor |
5.5 | 2.3 | 4.0 | 1.3 | versicolor |
6.5 | 2.8 | 4.6 | 1.5 | versicolor |
5.7 | 2.8 | 4.5 | 1.3 | versicolor |
6.3 | 3.3 | 4.7 | 1.6 | versicolor |
4.9 | 2.4 | 3.3 | 1.0 | versicolor |
6.6 | 2.9 | 4.6 | 1.3 | versicolor |
5.2 | 2.7 | 3.9 | 1.4 | versicolor |
5.0 | 2.0 | 3.5 | 1.0 | versicolor |
5.9 | 3.0 | 4.2 | 1.5 | versicolor |
6.0 | 2.2 | 4.0 | 1.0 | versicolor |
6.1 | 2.9 | 4.7 | 1.4 | versicolor |
5.6 | 2.9 | 3.6 | 1.3 | versicolor |
6.7 | 3.1 | 4.4 | 1.4 | versicolor |
5.6 | 3.0 | 4.5 | 1.5 | versicolor |
5.8 | 2.7 | 4.1 | 1.0 | versicolor |
6.2 | 2.2 | 4.5 | 1.5 | versicolor |
5.6 | 2.5 | 3.9 | 1.1 | versicolor |
5.9 | 3.2 | 4.8 | 1.8 | versicolor |
6.1 | 2.8 | 4.0 | 1.3 | versicolor |
6.3 | 2.5 | 4.9 | 1.5 | versicolor |
6.1 | 2.8 | 4.7 | 1.2 | versicolor |
6.4 | 2.9 | 4.3 | 1.3 | versicolor |
6.6 | 3.0 | 4.4 | 1.4 | versicolor |
6.8 | 2.8 | 4.8 | 1.4 | versicolor |
6.7 | 3.0 | 5.0 | 1.7 | versicolor |
6.0 | 2.9 | 4.5 | 1.5 | versicolor |
5.7 | 2.6 | 3.5 | 1.0 | versicolor |
5.5 | 2.4 | 3.8 | 1.1 | versicolor |
5.5 | 2.4 | 3.7 | 1.0 | versicolor |
5.8 | 2.7 | 3.9 | 1.2 | versicolor |
6.0 | 2.7 | 5.1 | 1.6 | versicolor |
5.4 | 3.0 | 4.5 | 1.5 | versicolor |
6.0 | 3.4 | 4.5 | 1.6 | versicolor |
6.7 | 3.1 | 4.7 | 1.5 | versicolor |
6.3 | 2.3 | 4.4 | 1.3 | versicolor |
5.6 | 3.0 | 4.1 | 1.3 | versicolor |
5.5 | 2.5 | 4.0 | 1.3 | versicolor |
5.5 | 2.6 | 4.4 | 1.2 | versicolor |
6.1 | 3.0 | 4.6 | 1.4 | versicolor |
5.8 | 2.6 | 4.0 | 1.2 | versicolor |
5.0 | 2.3 | 3.3 | 1.0 | versicolor |
5.6 | 2.7 | 4.2 | 1.3 | versicolor |
5.7 | 3.0 | 4.2 | 1.2 | versicolor |
5.7 | 2.9 | 4.2 | 1.3 | versicolor |
6.2 | 2.9 | 4.3 | 1.3 | versicolor |
5.1 | 2.5 | 3.0 | 1.1 | versicolor |
5.7 | 2.8 | 4.1 | 1.3 | versicolor |
6.3 | 3.3 | 6.0 | 2.5 | virginica |
5.8 | 2.7 | 5.1 | 1.9 | virginica |
7.1 | 3.0 | 5.9 | 2.1 | virginica |
6.3 | 2.9 | 5.6 | 1.8 | virginica |
6.5 | 3.0 | 5.8 | 2.2 | virginica |
7.6 | 3.0 | 6.6 | 2.1 | virginica |
4.9 | 2.5 | 4.5 | 1.7 | virginica |
7.3 | 2.9 | 6.3 | 1.8 | virginica |
6.7 | 2.5 | 5.8 | 1.8 | virginica |
7.2 | 3.6 | 6.1 | 2.5 | virginica |
6.5 | 3.2 | 5.1 | 2.0 | virginica |
6.4 | 2.7 | 5.3 | 1.9 | virginica |
6.8 | 3.0 | 5.5 | 2.1 | virginica |
5.7 | 2.5 | 5.0 | 2.0 | virginica |
5.8 | 2.8 | 5.1 | 2.4 | virginica |
6.4 | 3.2 | 5.3 | 2.3 | virginica |
6.5 | 3.0 | 5.5 | 1.8 | virginica |
7.7 | 3.8 | 6.7 | 2.2 | virginica |
7.7 | 2.6 | 6.9 | 2.3 | virginica |
6.0 | 2.2 | 5.0 | 1.5 | virginica |
6.9 | 3.2 | 5.7 | 2.3 | virginica |
5.6 | 2.8 | 4.9 | 2.0 | virginica |
7.7 | 2.8 | 6.7 | 2.0 | virginica |
6.3 | 2.7 | 4.9 | 1.8 | virginica |
6.7 | 3.3 | 5.7 | 2.1 | virginica |
7.2 | 3.2 | 6.0 | 1.8 | virginica |
6.2 | 2.8 | 4.8 | 1.8 | virginica |
6.1 | 3.0 | 4.9 | 1.8 | virginica |
6.4 | 2.8 | 5.6 | 2.1 | virginica |
7.2 | 3.0 | 5.8 | 1.6 | virginica |
7.4 | 2.8 | 6.1 | 1.9 | virginica |
7.9 | 3.8 | 6.4 | 2.0 | virginica |
6.4 | 2.8 | 5.6 | 2.2 | virginica |
6.3 | 2.8 | 5.1 | 1.5 | virginica |
6.1 | 2.6 | 5.6 | 1.4 | virginica |
7.7 | 3.0 | 6.1 | 2.3 | virginica |
6.3 | 3.4 | 5.6 | 2.4 | virginica |
6.4 | 3.1 | 5.5 | 1.8 | virginica |
6.0 | 3.0 | 4.8 | 1.8 | virginica |
6.9 | 3.1 | 5.4 | 2.1 | virginica |
6.7 | 3.1 | 5.6 | 2.4 | virginica |
6.9 | 3.1 | 5.1 | 2.3 | virginica |
6.8 | 3.2 | 5.9 | 2.3 | virginica |
6.7 | 3.3 | 5.7 | 2.5 | virginica |
6.7 | 3.0 | 5.2 | 2.3 | virginica |
6.3 | 2.5 | 5.0 | 1.9 | virginica |
6.5 | 3.0 | 5.2 | 2.0 | virginica |
6.2 | 3.4 | 5.4 | 2.3 | virginica |
5.9 | 3.0 | 5.1 | 1.8 | virginica |
After using the distinct()
function, 1 row was removed.
To randomly select fraction of rows:
sample_frac(iris, 0.05, replace = TRUE)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.4 | 3.4 | 1.7 | 0.2 | setosa |
6.1 | 3.0 | 4.6 | 1.4 | versicolor |
6.1 | 2.9 | 4.7 | 1.4 | versicolor |
6.7 | 3.1 | 4.7 | 1.5 | versicolor |
6.5 | 3.2 | 5.1 | 2.0 | virginica |
5.2 | 3.4 | 1.4 | 0.2 | setosa |
7.2 | 3.2 | 6.0 | 1.8 | virginica |
5.0 | 2.0 | 3.5 | 1.0 | versicolor |
Randomly keep 5% of the dataframe “iris”.
To randomly select n rows:
sample_n(iris, 10, replace = TRUE)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
6.7 | 3.1 | 5.6 | 2.4 | virginica |
6.0 | 3.0 | 4.8 | 1.8 | virginica |
6.2 | 2.2 | 4.5 | 1.5 | versicolor |
5.0 | 3.4 | 1.5 | 0.2 | setosa |
6.4 | 2.8 | 5.6 | 2.1 | virginica |
6.0 | 3.0 | 4.8 | 1.8 | virginica |
6.4 | 2.8 | 5.6 | 2.2 | virginica |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
6.3 | 2.8 | 5.1 | 1.5 | virginica |
6.3 | 3.4 | 5.6 | 2.4 | virginica |
Randomly keep 10 rows of the dataframe “iris”.
To Select rows by position:
slice(iris, 10:15)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
4.9 | 3.1 | 1.5 | 0.1 | setosa |
5.4 | 3.7 | 1.5 | 0.2 | setosa |
4.8 | 3.4 | 1.6 | 0.2 | setosa |
4.8 | 3.0 | 1.4 | 0.1 | setosa |
4.3 | 3.0 | 1.1 | 0.1 | setosa |
5.8 | 4.0 | 1.2 | 0.2 | setosa |
Keep the row 10 to the row 15 of the dataframe “iris”.
Select and order top n entries (by group if grouped data):
top_n(iris, 1, Sepal.Length)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
7.9 | 3.8 | 6.4 | 2 | virginica |
Keep the highest value in column “Sepal.Length”.
To subset variables (columns), here some functions:
To select columns by name:
select(iris, Sepal.Width, Petal.Length, Species)
The columns “Sepal.Width”, “Petal.Length” and “Species” will be kept.
Sepal.Width | Petal.Length | Species |
---|---|---|
3.5 | 1.4 | setosa |
3.0 | 1.4 | setosa |
3.2 | 1.3 | setosa |
3.1 | 1.5 | setosa |
3.6 | 1.4 | setosa |
3.9 | 1.7 | setosa |
3.4 | 1.4 | setosa |
3.4 | 1.5 | setosa |
2.9 | 1.4 | setosa |
3.1 | 1.5 | setosa |
3.7 | 1.5 | setosa |
3.4 | 1.6 | setosa |
3.0 | 1.4 | setosa |
3.0 | 1.1 | setosa |
4.0 | 1.2 | setosa |
4.4 | 1.5 | setosa |
3.9 | 1.3 | setosa |
3.5 | 1.4 | setosa |
3.8 | 1.7 | setosa |
3.8 | 1.5 | setosa |
3.4 | 1.7 | setosa |
3.7 | 1.5 | setosa |
3.6 | 1.0 | setosa |
3.3 | 1.7 | setosa |
3.4 | 1.9 | setosa |
3.0 | 1.6 | setosa |
3.4 | 1.6 | setosa |
3.5 | 1.5 | setosa |
3.4 | 1.4 | setosa |
3.2 | 1.6 | setosa |
3.1 | 1.6 | setosa |
3.4 | 1.5 | setosa |
4.1 | 1.5 | setosa |
4.2 | 1.4 | setosa |
3.1 | 1.5 | setosa |
3.2 | 1.2 | setosa |
3.5 | 1.3 | setosa |
3.6 | 1.4 | setosa |
3.0 | 1.3 | setosa |
3.4 | 1.5 | setosa |
3.5 | 1.3 | setosa |
2.3 | 1.3 | setosa |
3.2 | 1.3 | setosa |
3.5 | 1.6 | setosa |
3.8 | 1.9 | setosa |
3.0 | 1.4 | setosa |
3.8 | 1.6 | setosa |
3.2 | 1.4 | setosa |
3.7 | 1.5 | setosa |
3.3 | 1.4 | setosa |
3.2 | 4.7 | versicolor |
3.2 | 4.5 | versicolor |
3.1 | 4.9 | versicolor |
2.3 | 4.0 | versicolor |
2.8 | 4.6 | versicolor |
2.8 | 4.5 | versicolor |
3.3 | 4.7 | versicolor |
2.4 | 3.3 | versicolor |
2.9 | 4.6 | versicolor |
2.7 | 3.9 | versicolor |
2.0 | 3.5 | versicolor |
3.0 | 4.2 | versicolor |
2.2 | 4.0 | versicolor |
2.9 | 4.7 | versicolor |
2.9 | 3.6 | versicolor |
3.1 | 4.4 | versicolor |
3.0 | 4.5 | versicolor |
2.7 | 4.1 | versicolor |
2.2 | 4.5 | versicolor |
2.5 | 3.9 | versicolor |
3.2 | 4.8 | versicolor |
2.8 | 4.0 | versicolor |
2.5 | 4.9 | versicolor |
2.8 | 4.7 | versicolor |
2.9 | 4.3 | versicolor |
3.0 | 4.4 | versicolor |
2.8 | 4.8 | versicolor |
3.0 | 5.0 | versicolor |
2.9 | 4.5 | versicolor |
2.6 | 3.5 | versicolor |
2.4 | 3.8 | versicolor |
2.4 | 3.7 | versicolor |
2.7 | 3.9 | versicolor |
2.7 | 5.1 | versicolor |
3.0 | 4.5 | versicolor |
3.4 | 4.5 | versicolor |
3.1 | 4.7 | versicolor |
2.3 | 4.4 | versicolor |
3.0 | 4.1 | versicolor |
2.5 | 4.0 | versicolor |
2.6 | 4.4 | versicolor |
3.0 | 4.6 | versicolor |
2.6 | 4.0 | versicolor |
2.3 | 3.3 | versicolor |
2.7 | 4.2 | versicolor |
3.0 | 4.2 | versicolor |
2.9 | 4.2 | versicolor |
2.9 | 4.3 | versicolor |
2.5 | 3.0 | versicolor |
2.8 | 4.1 | versicolor |
3.3 | 6.0 | virginica |
2.7 | 5.1 | virginica |
3.0 | 5.9 | virginica |
2.9 | 5.6 | virginica |
3.0 | 5.8 | virginica |
3.0 | 6.6 | virginica |
2.5 | 4.5 | virginica |
2.9 | 6.3 | virginica |
2.5 | 5.8 | virginica |
3.6 | 6.1 | virginica |
3.2 | 5.1 | virginica |
2.7 | 5.3 | virginica |
3.0 | 5.5 | virginica |
2.5 | 5.0 | virginica |
2.8 | 5.1 | virginica |
3.2 | 5.3 | virginica |
3.0 | 5.5 | virginica |
3.8 | 6.7 | virginica |
2.6 | 6.9 | virginica |
2.2 | 5.0 | virginica |
3.2 | 5.7 | virginica |
2.8 | 4.9 | virginica |
2.8 | 6.7 | virginica |
2.7 | 4.9 | virginica |
3.3 | 5.7 | virginica |
3.2 | 6.0 | virginica |
2.8 | 4.8 | virginica |
3.0 | 4.9 | virginica |
2.8 | 5.6 | virginica |
3.0 | 5.8 | virginica |
2.8 | 6.1 | virginica |
3.8 | 6.4 | virginica |
2.8 | 5.6 | virginica |
2.8 | 5.1 | virginica |
2.6 | 5.6 | virginica |
3.0 | 6.1 | virginica |
3.4 | 5.6 | virginica |
3.1 | 5.5 | virginica |
3.0 | 4.8 | virginica |
3.1 | 5.4 | virginica |
3.1 | 5.6 | virginica |
3.1 | 5.1 | virginica |
2.7 | 5.1 | virginica |
3.2 | 5.9 | virginica |
3.3 | 5.7 | virginica |
3.0 | 5.2 | virginica |
2.5 | 5.0 | virginica |
3.0 | 5.2 | virginica |
3.4 | 5.4 | virginica |
3.0 | 5.1 | virginica |
To select columns whose name contains a character string:
select(iris, contains("."))
The columns containing a “dot” will be kept.
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 |
4.9 | 3.0 | 1.4 | 0.2 |
4.7 | 3.2 | 1.3 | 0.2 |
4.6 | 3.1 | 1.5 | 0.2 |
5.0 | 3.6 | 1.4 | 0.2 |
5.4 | 3.9 | 1.7 | 0.4 |
4.6 | 3.4 | 1.4 | 0.3 |
5.0 | 3.4 | 1.5 | 0.2 |
4.4 | 2.9 | 1.4 | 0.2 |
4.9 | 3.1 | 1.5 | 0.1 |
5.4 | 3.7 | 1.5 | 0.2 |
4.8 | 3.4 | 1.6 | 0.2 |
4.8 | 3.0 | 1.4 | 0.1 |
4.3 | 3.0 | 1.1 | 0.1 |
5.8 | 4.0 | 1.2 | 0.2 |
5.7 | 4.4 | 1.5 | 0.4 |
5.4 | 3.9 | 1.3 | 0.4 |
5.1 | 3.5 | 1.4 | 0.3 |
5.7 | 3.8 | 1.7 | 0.3 |
5.1 | 3.8 | 1.5 | 0.3 |
5.4 | 3.4 | 1.7 | 0.2 |
5.1 | 3.7 | 1.5 | 0.4 |
4.6 | 3.6 | 1.0 | 0.2 |
5.1 | 3.3 | 1.7 | 0.5 |
4.8 | 3.4 | 1.9 | 0.2 |
5.0 | 3.0 | 1.6 | 0.2 |
5.0 | 3.4 | 1.6 | 0.4 |
5.2 | 3.5 | 1.5 | 0.2 |
5.2 | 3.4 | 1.4 | 0.2 |
4.7 | 3.2 | 1.6 | 0.2 |
4.8 | 3.1 | 1.6 | 0.2 |
5.4 | 3.4 | 1.5 | 0.4 |
5.2 | 4.1 | 1.5 | 0.1 |
5.5 | 4.2 | 1.4 | 0.2 |
4.9 | 3.1 | 1.5 | 0.2 |
5.0 | 3.2 | 1.2 | 0.2 |
5.5 | 3.5 | 1.3 | 0.2 |
4.9 | 3.6 | 1.4 | 0.1 |
4.4 | 3.0 | 1.3 | 0.2 |
5.1 | 3.4 | 1.5 | 0.2 |
5.0 | 3.5 | 1.3 | 0.3 |
4.5 | 2.3 | 1.3 | 0.3 |
4.4 | 3.2 | 1.3 | 0.2 |
5.0 | 3.5 | 1.6 | 0.6 |
5.1 | 3.8 | 1.9 | 0.4 |
4.8 | 3.0 | 1.4 | 0.3 |
5.1 | 3.8 | 1.6 | 0.2 |
4.6 | 3.2 | 1.4 | 0.2 |
5.3 | 3.7 | 1.5 | 0.2 |
5.0 | 3.3 | 1.4 | 0.2 |
7.0 | 3.2 | 4.7 | 1.4 |
6.4 | 3.2 | 4.5 | 1.5 |
6.9 | 3.1 | 4.9 | 1.5 |
5.5 | 2.3 | 4.0 | 1.3 |
6.5 | 2.8 | 4.6 | 1.5 |
5.7 | 2.8 | 4.5 | 1.3 |
6.3 | 3.3 | 4.7 | 1.6 |
4.9 | 2.4 | 3.3 | 1.0 |
6.6 | 2.9 | 4.6 | 1.3 |
5.2 | 2.7 | 3.9 | 1.4 |
5.0 | 2.0 | 3.5 | 1.0 |
5.9 | 3.0 | 4.2 | 1.5 |
6.0 | 2.2 | 4.0 | 1.0 |
6.1 | 2.9 | 4.7 | 1.4 |
5.6 | 2.9 | 3.6 | 1.3 |
6.7 | 3.1 | 4.4 | 1.4 |
5.6 | 3.0 | 4.5 | 1.5 |
5.8 | 2.7 | 4.1 | 1.0 |
6.2 | 2.2 | 4.5 | 1.5 |
5.6 | 2.5 | 3.9 | 1.1 |
5.9 | 3.2 | 4.8 | 1.8 |
6.1 | 2.8 | 4.0 | 1.3 |
6.3 | 2.5 | 4.9 | 1.5 |
6.1 | 2.8 | 4.7 | 1.2 |
6.4 | 2.9 | 4.3 | 1.3 |
6.6 | 3.0 | 4.4 | 1.4 |
6.8 | 2.8 | 4.8 | 1.4 |
6.7 | 3.0 | 5.0 | 1.7 |
6.0 | 2.9 | 4.5 | 1.5 |
5.7 | 2.6 | 3.5 | 1.0 |
5.5 | 2.4 | 3.8 | 1.1 |
5.5 | 2.4 | 3.7 | 1.0 |
5.8 | 2.7 | 3.9 | 1.2 |
6.0 | 2.7 | 5.1 | 1.6 |
5.4 | 3.0 | 4.5 | 1.5 |
6.0 | 3.4 | 4.5 | 1.6 |
6.7 | 3.1 | 4.7 | 1.5 |
6.3 | 2.3 | 4.4 | 1.3 |
5.6 | 3.0 | 4.1 | 1.3 |
5.5 | 2.5 | 4.0 | 1.3 |
5.5 | 2.6 | 4.4 | 1.2 |
6.1 | 3.0 | 4.6 | 1.4 |
5.8 | 2.6 | 4.0 | 1.2 |
5.0 | 2.3 | 3.3 | 1.0 |
5.6 | 2.7 | 4.2 | 1.3 |
5.7 | 3.0 | 4.2 | 1.2 |
5.7 | 2.9 | 4.2 | 1.3 |
6.2 | 2.9 | 4.3 | 1.3 |
5.1 | 2.5 | 3.0 | 1.1 |
5.7 | 2.8 | 4.1 | 1.3 |
6.3 | 3.3 | 6.0 | 2.5 |
5.8 | 2.7 | 5.1 | 1.9 |
7.1 | 3.0 | 5.9 | 2.1 |
6.3 | 2.9 | 5.6 | 1.8 |
6.5 | 3.0 | 5.8 | 2.2 |
7.6 | 3.0 | 6.6 | 2.1 |
4.9 | 2.5 | 4.5 | 1.7 |
7.3 | 2.9 | 6.3 | 1.8 |
6.7 | 2.5 | 5.8 | 1.8 |
7.2 | 3.6 | 6.1 | 2.5 |
6.5 | 3.2 | 5.1 | 2.0 |
6.4 | 2.7 | 5.3 | 1.9 |
6.8 | 3.0 | 5.5 | 2.1 |
5.7 | 2.5 | 5.0 | 2.0 |
5.8 | 2.8 | 5.1 | 2.4 |
6.4 | 3.2 | 5.3 | 2.3 |
6.5 | 3.0 | 5.5 | 1.8 |
7.7 | 3.8 | 6.7 | 2.2 |
7.7 | 2.6 | 6.9 | 2.3 |
6.0 | 2.2 | 5.0 | 1.5 |
6.9 | 3.2 | 5.7 | 2.3 |
5.6 | 2.8 | 4.9 | 2.0 |
7.7 | 2.8 | 6.7 | 2.0 |
6.3 | 2.7 | 4.9 | 1.8 |
6.7 | 3.3 | 5.7 | 2.1 |
7.2 | 3.2 | 6.0 | 1.8 |
6.2 | 2.8 | 4.8 | 1.8 |
6.1 | 3.0 | 4.9 | 1.8 |
6.4 | 2.8 | 5.6 | 2.1 |
7.2 | 3.0 | 5.8 | 1.6 |
7.4 | 2.8 | 6.1 | 1.9 |
7.9 | 3.8 | 6.4 | 2.0 |
6.4 | 2.8 | 5.6 | 2.2 |
6.3 | 2.8 | 5.1 | 1.5 |
6.1 | 2.6 | 5.6 | 1.4 |
7.7 | 3.0 | 6.1 | 2.3 |
6.3 | 3.4 | 5.6 | 2.4 |
6.4 | 3.1 | 5.5 | 1.8 |
6.0 | 3.0 | 4.8 | 1.8 |
6.9 | 3.1 | 5.4 | 2.1 |
6.7 | 3.1 | 5.6 | 2.4 |
6.9 | 3.1 | 5.1 | 2.3 |
5.8 | 2.7 | 5.1 | 1.9 |
6.8 | 3.2 | 5.9 | 2.3 |
6.7 | 3.3 | 5.7 | 2.5 |
6.7 | 3.0 | 5.2 | 2.3 |
6.3 | 2.5 | 5.0 | 1.9 |
6.5 | 3.0 | 5.2 | 2.0 |
6.2 | 3.4 | 5.4 | 2.3 |
5.9 | 3.0 | 5.1 | 1.8 |
To select columns whose name matches a regular expression:
select(iris, matches(".w."))
The columns containing a “w” will be kept.
Sepal.Width | Petal.Width |
---|---|
3.5 | 0.2 |
3.0 | 0.2 |
3.2 | 0.2 |
3.1 | 0.2 |
3.6 | 0.2 |
3.9 | 0.4 |
3.4 | 0.3 |
3.4 | 0.2 |
2.9 | 0.2 |
3.1 | 0.1 |
3.7 | 0.2 |
3.4 | 0.2 |
3.0 | 0.1 |
3.0 | 0.1 |
4.0 | 0.2 |
4.4 | 0.4 |
3.9 | 0.4 |
3.5 | 0.3 |
3.8 | 0.3 |
3.8 | 0.3 |
3.4 | 0.2 |
3.7 | 0.4 |
3.6 | 0.2 |
3.3 | 0.5 |
3.4 | 0.2 |
3.0 | 0.2 |
3.4 | 0.4 |
3.5 | 0.2 |
3.4 | 0.2 |
3.2 | 0.2 |
3.1 | 0.2 |
3.4 | 0.4 |
4.1 | 0.1 |
4.2 | 0.2 |
3.1 | 0.2 |
3.2 | 0.2 |
3.5 | 0.2 |
3.6 | 0.1 |
3.0 | 0.2 |
3.4 | 0.2 |
3.5 | 0.3 |
2.3 | 0.3 |
3.2 | 0.2 |
3.5 | 0.6 |
3.8 | 0.4 |
3.0 | 0.3 |
3.8 | 0.2 |
3.2 | 0.2 |
3.7 | 0.2 |
3.3 | 0.2 |
3.2 | 1.4 |
3.2 | 1.5 |
3.1 | 1.5 |
2.3 | 1.3 |
2.8 | 1.5 |
2.8 | 1.3 |
3.3 | 1.6 |
2.4 | 1.0 |
2.9 | 1.3 |
2.7 | 1.4 |
2.0 | 1.0 |
3.0 | 1.5 |
2.2 | 1.0 |
2.9 | 1.4 |
2.9 | 1.3 |
3.1 | 1.4 |
3.0 | 1.5 |
2.7 | 1.0 |
2.2 | 1.5 |
2.5 | 1.1 |
3.2 | 1.8 |
2.8 | 1.3 |
2.5 | 1.5 |
2.8 | 1.2 |
2.9 | 1.3 |
3.0 | 1.4 |
2.8 | 1.4 |
3.0 | 1.7 |
2.9 | 1.5 |
2.6 | 1.0 |
2.4 | 1.1 |
2.4 | 1.0 |
2.7 | 1.2 |
2.7 | 1.6 |
3.0 | 1.5 |
3.4 | 1.6 |
3.1 | 1.5 |
2.3 | 1.3 |
3.0 | 1.3 |
2.5 | 1.3 |
2.6 | 1.2 |
3.0 | 1.4 |
2.6 | 1.2 |
2.3 | 1.0 |
2.7 | 1.3 |
3.0 | 1.2 |
2.9 | 1.3 |
2.9 | 1.3 |
2.5 | 1.1 |
2.8 | 1.3 |
3.3 | 2.5 |
2.7 | 1.9 |
3.0 | 2.1 |
2.9 | 1.8 |
3.0 | 2.2 |
3.0 | 2.1 |
2.5 | 1.7 |
2.9 | 1.8 |
2.5 | 1.8 |
3.6 | 2.5 |
3.2 | 2.0 |
2.7 | 1.9 |
3.0 | 2.1 |
2.5 | 2.0 |
2.8 | 2.4 |
3.2 | 2.3 |
3.0 | 1.8 |
3.8 | 2.2 |
2.6 | 2.3 |
2.2 | 1.5 |
3.2 | 2.3 |
2.8 | 2.0 |
2.8 | 2.0 |
2.7 | 1.8 |
3.3 | 2.1 |
3.2 | 1.8 |
2.8 | 1.8 |
3.0 | 1.8 |
2.8 | 2.1 |
3.0 | 1.6 |
2.8 | 1.9 |
3.8 | 2.0 |
2.8 | 2.2 |
2.8 | 1.5 |
2.6 | 1.4 |
3.0 | 2.3 |
3.4 | 2.4 |
3.1 | 1.8 |
3.0 | 1.8 |
3.1 | 2.1 |
3.1 | 2.4 |
3.1 | 2.3 |
2.7 | 1.9 |
3.2 | 2.3 |
3.3 | 2.5 |
3.0 | 2.3 |
2.5 | 1.9 |
3.0 | 2.0 |
3.4 | 2.3 |
3.0 | 1.8 |
To select all columns between Sepal.Length and Petal.Width (inclusive):
select(iris, Sepal.Length:Petal.Width)
All columns starting from the column “Sepal.Length” to “Petal.Width” will be kept.
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 |
4.9 | 3.0 | 1.4 | 0.2 |
4.7 | 3.2 | 1.3 | 0.2 |
4.6 | 3.1 | 1.5 | 0.2 |
5.0 | 3.6 | 1.4 | 0.2 |
5.4 | 3.9 | 1.7 | 0.4 |
4.6 | 3.4 | 1.4 | 0.3 |
5.0 | 3.4 | 1.5 | 0.2 |
4.4 | 2.9 | 1.4 | 0.2 |
4.9 | 3.1 | 1.5 | 0.1 |
5.4 | 3.7 | 1.5 | 0.2 |
4.8 | 3.4 | 1.6 | 0.2 |
4.8 | 3.0 | 1.4 | 0.1 |
4.3 | 3.0 | 1.1 | 0.1 |
5.8 | 4.0 | 1.2 | 0.2 |
5.7 | 4.4 | 1.5 | 0.4 |
5.4 | 3.9 | 1.3 | 0.4 |
5.1 | 3.5 | 1.4 | 0.3 |
5.7 | 3.8 | 1.7 | 0.3 |
5.1 | 3.8 | 1.5 | 0.3 |
5.4 | 3.4 | 1.7 | 0.2 |
5.1 | 3.7 | 1.5 | 0.4 |
4.6 | 3.6 | 1.0 | 0.2 |
5.1 | 3.3 | 1.7 | 0.5 |
4.8 | 3.4 | 1.9 | 0.2 |
5.0 | 3.0 | 1.6 | 0.2 |
5.0 | 3.4 | 1.6 | 0.4 |
5.2 | 3.5 | 1.5 | 0.2 |
5.2 | 3.4 | 1.4 | 0.2 |
4.7 | 3.2 | 1.6 | 0.2 |
4.8 | 3.1 | 1.6 | 0.2 |
5.4 | 3.4 | 1.5 | 0.4 |
5.2 | 4.1 | 1.5 | 0.1 |
5.5 | 4.2 | 1.4 | 0.2 |
4.9 | 3.1 | 1.5 | 0.2 |
5.0 | 3.2 | 1.2 | 0.2 |
5.5 | 3.5 | 1.3 | 0.2 |
4.9 | 3.6 | 1.4 | 0.1 |
4.4 | 3.0 | 1.3 | 0.2 |
5.1 | 3.4 | 1.5 | 0.2 |
5.0 | 3.5 | 1.3 | 0.3 |
4.5 | 2.3 | 1.3 | 0.3 |
4.4 | 3.2 | 1.3 | 0.2 |
5.0 | 3.5 | 1.6 | 0.6 |
5.1 | 3.8 | 1.9 | 0.4 |
4.8 | 3.0 | 1.4 | 0.3 |
5.1 | 3.8 | 1.6 | 0.2 |
4.6 | 3.2 | 1.4 | 0.2 |
5.3 | 3.7 | 1.5 | 0.2 |
5.0 | 3.3 | 1.4 | 0.2 |
7.0 | 3.2 | 4.7 | 1.4 |
6.4 | 3.2 | 4.5 | 1.5 |
6.9 | 3.1 | 4.9 | 1.5 |
5.5 | 2.3 | 4.0 | 1.3 |
6.5 | 2.8 | 4.6 | 1.5 |
5.7 | 2.8 | 4.5 | 1.3 |
6.3 | 3.3 | 4.7 | 1.6 |
4.9 | 2.4 | 3.3 | 1.0 |
6.6 | 2.9 | 4.6 | 1.3 |
5.2 | 2.7 | 3.9 | 1.4 |
5.0 | 2.0 | 3.5 | 1.0 |
5.9 | 3.0 | 4.2 | 1.5 |
6.0 | 2.2 | 4.0 | 1.0 |
6.1 | 2.9 | 4.7 | 1.4 |
5.6 | 2.9 | 3.6 | 1.3 |
6.7 | 3.1 | 4.4 | 1.4 |
5.6 | 3.0 | 4.5 | 1.5 |
5.8 | 2.7 | 4.1 | 1.0 |
6.2 | 2.2 | 4.5 | 1.5 |
5.6 | 2.5 | 3.9 | 1.1 |
5.9 | 3.2 | 4.8 | 1.8 |
6.1 | 2.8 | 4.0 | 1.3 |
6.3 | 2.5 | 4.9 | 1.5 |
6.1 | 2.8 | 4.7 | 1.2 |
6.4 | 2.9 | 4.3 | 1.3 |
6.6 | 3.0 | 4.4 | 1.4 |
6.8 | 2.8 | 4.8 | 1.4 |
6.7 | 3.0 | 5.0 | 1.7 |
6.0 | 2.9 | 4.5 | 1.5 |
5.7 | 2.6 | 3.5 | 1.0 |
5.5 | 2.4 | 3.8 | 1.1 |
5.5 | 2.4 | 3.7 | 1.0 |
5.8 | 2.7 | 3.9 | 1.2 |
6.0 | 2.7 | 5.1 | 1.6 |
5.4 | 3.0 | 4.5 | 1.5 |
6.0 | 3.4 | 4.5 | 1.6 |
6.7 | 3.1 | 4.7 | 1.5 |
6.3 | 2.3 | 4.4 | 1.3 |
5.6 | 3.0 | 4.1 | 1.3 |
5.5 | 2.5 | 4.0 | 1.3 |
5.5 | 2.6 | 4.4 | 1.2 |
6.1 | 3.0 | 4.6 | 1.4 |
5.8 | 2.6 | 4.0 | 1.2 |
5.0 | 2.3 | 3.3 | 1.0 |
5.6 | 2.7 | 4.2 | 1.3 |
5.7 | 3.0 | 4.2 | 1.2 |
5.7 | 2.9 | 4.2 | 1.3 |
6.2 | 2.9 | 4.3 | 1.3 |
5.1 | 2.5 | 3.0 | 1.1 |
5.7 | 2.8 | 4.1 | 1.3 |
6.3 | 3.3 | 6.0 | 2.5 |
5.8 | 2.7 | 5.1 | 1.9 |
7.1 | 3.0 | 5.9 | 2.1 |
6.3 | 2.9 | 5.6 | 1.8 |
6.5 | 3.0 | 5.8 | 2.2 |
7.6 | 3.0 | 6.6 | 2.1 |
4.9 | 2.5 | 4.5 | 1.7 |
7.3 | 2.9 | 6.3 | 1.8 |
6.7 | 2.5 | 5.8 | 1.8 |
7.2 | 3.6 | 6.1 | 2.5 |
6.5 | 3.2 | 5.1 | 2.0 |
6.4 | 2.7 | 5.3 | 1.9 |
6.8 | 3.0 | 5.5 | 2.1 |
5.7 | 2.5 | 5.0 | 2.0 |
5.8 | 2.8 | 5.1 | 2.4 |
6.4 | 3.2 | 5.3 | 2.3 |
6.5 | 3.0 | 5.5 | 1.8 |
7.7 | 3.8 | 6.7 | 2.2 |
7.7 | 2.6 | 6.9 | 2.3 |
6.0 | 2.2 | 5.0 | 1.5 |
6.9 | 3.2 | 5.7 | 2.3 |
5.6 | 2.8 | 4.9 | 2.0 |
7.7 | 2.8 | 6.7 | 2.0 |
6.3 | 2.7 | 4.9 | 1.8 |
6.7 | 3.3 | 5.7 | 2.1 |
7.2 | 3.2 | 6.0 | 1.8 |
6.2 | 2.8 | 4.8 | 1.8 |
6.1 | 3.0 | 4.9 | 1.8 |
6.4 | 2.8 | 5.6 | 2.1 |
7.2 | 3.0 | 5.8 | 1.6 |
7.4 | 2.8 | 6.1 | 1.9 |
7.9 | 3.8 | 6.4 | 2.0 |
6.4 | 2.8 | 5.6 | 2.2 |
6.3 | 2.8 | 5.1 | 1.5 |
6.1 | 2.6 | 5.6 | 1.4 |
7.7 | 3.0 | 6.1 | 2.3 |
6.3 | 3.4 | 5.6 | 2.4 |
6.4 | 3.1 | 5.5 | 1.8 |
6.0 | 3.0 | 4.8 | 1.8 |
6.9 | 3.1 | 5.4 | 2.1 |
6.7 | 3.1 | 5.6 | 2.4 |
6.9 | 3.1 | 5.1 | 2.3 |
5.8 | 2.7 | 5.1 | 1.9 |
6.8 | 3.2 | 5.9 | 2.3 |
6.7 | 3.3 | 5.7 | 2.5 |
6.7 | 3.0 | 5.2 | 2.3 |
6.3 | 2.5 | 5.0 | 1.9 |
6.5 | 3.0 | 5.2 | 2.0 |
6.2 | 3.4 | 5.4 | 2.3 |
5.9 | 3.0 | 5.1 | 1.8 |
To select columns whose name starts with a character string:
select(iris, starts_with("Sepal"))
The columns starting with the word “Sepal” will be kept.
Sepal.Length | Sepal.Width |
---|---|
5.1 | 3.5 |
4.9 | 3.0 |
4.7 | 3.2 |
4.6 | 3.1 |
5.0 | 3.6 |
5.4 | 3.9 |
4.6 | 3.4 |
5.0 | 3.4 |
4.4 | 2.9 |
4.9 | 3.1 |
5.4 | 3.7 |
4.8 | 3.4 |
4.8 | 3.0 |
4.3 | 3.0 |
5.8 | 4.0 |
5.7 | 4.4 |
5.4 | 3.9 |
5.1 | 3.5 |
5.7 | 3.8 |
5.1 | 3.8 |
5.4 | 3.4 |
5.1 | 3.7 |
4.6 | 3.6 |
5.1 | 3.3 |
4.8 | 3.4 |
5.0 | 3.0 |
5.0 | 3.4 |
5.2 | 3.5 |
5.2 | 3.4 |
4.7 | 3.2 |
4.8 | 3.1 |
5.4 | 3.4 |
5.2 | 4.1 |
5.5 | 4.2 |
4.9 | 3.1 |
5.0 | 3.2 |
5.5 | 3.5 |
4.9 | 3.6 |
4.4 | 3.0 |
5.1 | 3.4 |
5.0 | 3.5 |
4.5 | 2.3 |
4.4 | 3.2 |
5.0 | 3.5 |
5.1 | 3.8 |
4.8 | 3.0 |
5.1 | 3.8 |
4.6 | 3.2 |
5.3 | 3.7 |
5.0 | 3.3 |
7.0 | 3.2 |
6.4 | 3.2 |
6.9 | 3.1 |
5.5 | 2.3 |
6.5 | 2.8 |
5.7 | 2.8 |
6.3 | 3.3 |
4.9 | 2.4 |
6.6 | 2.9 |
5.2 | 2.7 |
5.0 | 2.0 |
5.9 | 3.0 |
6.0 | 2.2 |
6.1 | 2.9 |
5.6 | 2.9 |
6.7 | 3.1 |
5.6 | 3.0 |
5.8 | 2.7 |
6.2 | 2.2 |
5.6 | 2.5 |
5.9 | 3.2 |
6.1 | 2.8 |
6.3 | 2.5 |
6.1 | 2.8 |
6.4 | 2.9 |
6.6 | 3.0 |
6.8 | 2.8 |
6.7 | 3.0 |
6.0 | 2.9 |
5.7 | 2.6 |
5.5 | 2.4 |
5.5 | 2.4 |
5.8 | 2.7 |
6.0 | 2.7 |
5.4 | 3.0 |
6.0 | 3.4 |
6.7 | 3.1 |
6.3 | 2.3 |
5.6 | 3.0 |
5.5 | 2.5 |
5.5 | 2.6 |
6.1 | 3.0 |
5.8 | 2.6 |
5.0 | 2.3 |
5.6 | 2.7 |
5.7 | 3.0 |
5.7 | 2.9 |
6.2 | 2.9 |
5.1 | 2.5 |
5.7 | 2.8 |
6.3 | 3.3 |
5.8 | 2.7 |
7.1 | 3.0 |
6.3 | 2.9 |
6.5 | 3.0 |
7.6 | 3.0 |
4.9 | 2.5 |
7.3 | 2.9 |
6.7 | 2.5 |
7.2 | 3.6 |
6.5 | 3.2 |
6.4 | 2.7 |
6.8 | 3.0 |
5.7 | 2.5 |
5.8 | 2.8 |
6.4 | 3.2 |
6.5 | 3.0 |
7.7 | 3.8 |
7.7 | 2.6 |
6.0 | 2.2 |
6.9 | 3.2 |
5.6 | 2.8 |
7.7 | 2.8 |
6.3 | 2.7 |
6.7 | 3.3 |
7.2 | 3.2 |
6.2 | 2.8 |
6.1 | 3.0 |
6.4 | 2.8 |
7.2 | 3.0 |
7.4 | 2.8 |
7.9 | 3.8 |
6.4 | 2.8 |
6.3 | 2.8 |
6.1 | 2.6 |
7.7 | 3.0 |
6.3 | 3.4 |
6.4 | 3.1 |
6.0 | 3.0 |
6.9 | 3.1 |
6.7 | 3.1 |
6.9 | 3.1 |
5.8 | 2.7 |
6.8 | 3.2 |
6.7 | 3.3 |
6.7 | 3.0 |
6.3 | 2.5 |
6.5 | 3.0 |
6.2 | 3.4 |
5.9 | 3.0 |
To select columns whose name ends with a character string:
select(iris, ends_with("Length"))
The columns ending with the word “Length” will be kept.
Sepal.Length | Petal.Length |
---|---|
5.1 | 1.4 |
4.9 | 1.4 |
4.7 | 1.3 |
4.6 | 1.5 |
5.0 | 1.4 |
5.4 | 1.7 |
4.6 | 1.4 |
5.0 | 1.5 |
4.4 | 1.4 |
4.9 | 1.5 |
5.4 | 1.5 |
4.8 | 1.6 |
4.8 | 1.4 |
4.3 | 1.1 |
5.8 | 1.2 |
5.7 | 1.5 |
5.4 | 1.3 |
5.1 | 1.4 |
5.7 | 1.7 |
5.1 | 1.5 |
5.4 | 1.7 |
5.1 | 1.5 |
4.6 | 1.0 |
5.1 | 1.7 |
4.8 | 1.9 |
5.0 | 1.6 |
5.0 | 1.6 |
5.2 | 1.5 |
5.2 | 1.4 |
4.7 | 1.6 |
4.8 | 1.6 |
5.4 | 1.5 |
5.2 | 1.5 |
5.5 | 1.4 |
4.9 | 1.5 |
5.0 | 1.2 |
5.5 | 1.3 |
4.9 | 1.4 |
4.4 | 1.3 |
5.1 | 1.5 |
5.0 | 1.3 |
4.5 | 1.3 |
4.4 | 1.3 |
5.0 | 1.6 |
5.1 | 1.9 |
4.8 | 1.4 |
5.1 | 1.6 |
4.6 | 1.4 |
5.3 | 1.5 |
5.0 | 1.4 |
7.0 | 4.7 |
6.4 | 4.5 |
6.9 | 4.9 |
5.5 | 4.0 |
6.5 | 4.6 |
5.7 | 4.5 |
6.3 | 4.7 |
4.9 | 3.3 |
6.6 | 4.6 |
5.2 | 3.9 |
5.0 | 3.5 |
5.9 | 4.2 |
6.0 | 4.0 |
6.1 | 4.7 |
5.6 | 3.6 |
6.7 | 4.4 |
5.6 | 4.5 |
5.8 | 4.1 |
6.2 | 4.5 |
5.6 | 3.9 |
5.9 | 4.8 |
6.1 | 4.0 |
6.3 | 4.9 |
6.1 | 4.7 |
6.4 | 4.3 |
6.6 | 4.4 |
6.8 | 4.8 |
6.7 | 5.0 |
6.0 | 4.5 |
5.7 | 3.5 |
5.5 | 3.8 |
5.5 | 3.7 |
5.8 | 3.9 |
6.0 | 5.1 |
5.4 | 4.5 |
6.0 | 4.5 |
6.7 | 4.7 |
6.3 | 4.4 |
5.6 | 4.1 |
5.5 | 4.0 |
5.5 | 4.4 |
6.1 | 4.6 |
5.8 | 4.0 |
5.0 | 3.3 |
5.6 | 4.2 |
5.7 | 4.2 |
5.7 | 4.2 |
6.2 | 4.3 |
5.1 | 3.0 |
5.7 | 4.1 |
6.3 | 6.0 |
5.8 | 5.1 |
7.1 | 5.9 |
6.3 | 5.6 |
6.5 | 5.8 |
7.6 | 6.6 |
4.9 | 4.5 |
7.3 | 6.3 |
6.7 | 5.8 |
7.2 | 6.1 |
6.5 | 5.1 |
6.4 | 5.3 |
6.8 | 5.5 |
5.7 | 5.0 |
5.8 | 5.1 |
6.4 | 5.3 |
6.5 | 5.5 |
7.7 | 6.7 |
7.7 | 6.9 |
6.0 | 5.0 |
6.9 | 5.7 |
5.6 | 4.9 |
7.7 | 6.7 |
6.3 | 4.9 |
6.7 | 5.7 |
7.2 | 6.0 |
6.2 | 4.8 |
6.1 | 4.9 |
6.4 | 5.6 |
7.2 | 5.8 |
7.4 | 6.1 |
7.9 | 6.4 |
6.4 | 5.6 |
6.3 | 5.1 |
6.1 | 5.6 |
7.7 | 6.1 |
6.3 | 5.6 |
6.4 | 5.5 |
6.0 | 4.8 |
6.9 | 5.4 |
6.7 | 5.6 |
6.9 | 5.1 |
5.8 | 5.1 |
6.8 | 5.9 |
6.7 | 5.7 |
6.7 | 5.2 |
6.3 | 5.0 |
6.5 | 5.2 |
6.2 | 5.4 |
5.9 | 5.1 |
To select every column:
select(iris, everything())
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
4.6 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.6 | 1.4 | 0.2 | setosa |
5.4 | 3.9 | 1.7 | 0.4 | setosa |
4.6 | 3.4 | 1.4 | 0.3 | setosa |
5.0 | 3.4 | 1.5 | 0.2 | setosa |
4.4 | 2.9 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.1 | setosa |
5.4 | 3.7 | 1.5 | 0.2 | setosa |
4.8 | 3.4 | 1.6 | 0.2 | setosa |
4.8 | 3.0 | 1.4 | 0.1 | setosa |
4.3 | 3.0 | 1.1 | 0.1 | setosa |
5.8 | 4.0 | 1.2 | 0.2 | setosa |
5.7 | 4.4 | 1.5 | 0.4 | setosa |
5.4 | 3.9 | 1.3 | 0.4 | setosa |
5.1 | 3.5 | 1.4 | 0.3 | setosa |
5.7 | 3.8 | 1.7 | 0.3 | setosa |
5.1 | 3.8 | 1.5 | 0.3 | setosa |
5.4 | 3.4 | 1.7 | 0.2 | setosa |
5.1 | 3.7 | 1.5 | 0.4 | setosa |
4.6 | 3.6 | 1.0 | 0.2 | setosa |
5.1 | 3.3 | 1.7 | 0.5 | setosa |
4.8 | 3.4 | 1.9 | 0.2 | setosa |
5.0 | 3.0 | 1.6 | 0.2 | setosa |
5.0 | 3.4 | 1.6 | 0.4 | setosa |
5.2 | 3.5 | 1.5 | 0.2 | setosa |
5.2 | 3.4 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.6 | 0.2 | setosa |
4.8 | 3.1 | 1.6 | 0.2 | setosa |
5.4 | 3.4 | 1.5 | 0.4 | setosa |
5.2 | 4.1 | 1.5 | 0.1 | setosa |
5.5 | 4.2 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.2 | 1.2 | 0.2 | setosa |
5.5 | 3.5 | 1.3 | 0.2 | setosa |
4.9 | 3.6 | 1.4 | 0.1 | setosa |
4.4 | 3.0 | 1.3 | 0.2 | setosa |
5.1 | 3.4 | 1.5 | 0.2 | setosa |
5.0 | 3.5 | 1.3 | 0.3 | setosa |
4.5 | 2.3 | 1.3 | 0.3 | setosa |
4.4 | 3.2 | 1.3 | 0.2 | setosa |
5.0 | 3.5 | 1.6 | 0.6 | setosa |
5.1 | 3.8 | 1.9 | 0.4 | setosa |
4.8 | 3.0 | 1.4 | 0.3 | setosa |
5.1 | 3.8 | 1.6 | 0.2 | setosa |
4.6 | 3.2 | 1.4 | 0.2 | setosa |
5.3 | 3.7 | 1.5 | 0.2 | setosa |
5.0 | 3.3 | 1.4 | 0.2 | setosa |
7.0 | 3.2 | 4.7 | 1.4 | versicolor |
6.4 | 3.2 | 4.5 | 1.5 | versicolor |
6.9 | 3.1 | 4.9 | 1.5 | versicolor |
5.5 | 2.3 | 4.0 | 1.3 | versicolor |
6.5 | 2.8 | 4.6 | 1.5 | versicolor |
5.7 | 2.8 | 4.5 | 1.3 | versicolor |
6.3 | 3.3 | 4.7 | 1.6 | versicolor |
4.9 | 2.4 | 3.3 | 1.0 | versicolor |
6.6 | 2.9 | 4.6 | 1.3 | versicolor |
5.2 | 2.7 | 3.9 | 1.4 | versicolor |
5.0 | 2.0 | 3.5 | 1.0 | versicolor |
5.9 | 3.0 | 4.2 | 1.5 | versicolor |
6.0 | 2.2 | 4.0 | 1.0 | versicolor |
6.1 | 2.9 | 4.7 | 1.4 | versicolor |
5.6 | 2.9 | 3.6 | 1.3 | versicolor |
6.7 | 3.1 | 4.4 | 1.4 | versicolor |
5.6 | 3.0 | 4.5 | 1.5 | versicolor |
5.8 | 2.7 | 4.1 | 1.0 | versicolor |
6.2 | 2.2 | 4.5 | 1.5 | versicolor |
5.6 | 2.5 | 3.9 | 1.1 | versicolor |
5.9 | 3.2 | 4.8 | 1.8 | versicolor |
6.1 | 2.8 | 4.0 | 1.3 | versicolor |
6.3 | 2.5 | 4.9 | 1.5 | versicolor |
6.1 | 2.8 | 4.7 | 1.2 | versicolor |
6.4 | 2.9 | 4.3 | 1.3 | versicolor |
6.6 | 3.0 | 4.4 | 1.4 | versicolor |
6.8 | 2.8 | 4.8 | 1.4 | versicolor |
6.7 | 3.0 | 5.0 | 1.7 | versicolor |
6.0 | 2.9 | 4.5 | 1.5 | versicolor |
5.7 | 2.6 | 3.5 | 1.0 | versicolor |
5.5 | 2.4 | 3.8 | 1.1 | versicolor |
5.5 | 2.4 | 3.7 | 1.0 | versicolor |
5.8 | 2.7 | 3.9 | 1.2 | versicolor |
6.0 | 2.7 | 5.1 | 1.6 | versicolor |
5.4 | 3.0 | 4.5 | 1.5 | versicolor |
6.0 | 3.4 | 4.5 | 1.6 | versicolor |
6.7 | 3.1 | 4.7 | 1.5 | versicolor |
6.3 | 2.3 | 4.4 | 1.3 | versicolor |
5.6 | 3.0 | 4.1 | 1.3 | versicolor |
5.5 | 2.5 | 4.0 | 1.3 | versicolor |
5.5 | 2.6 | 4.4 | 1.2 | versicolor |
6.1 | 3.0 | 4.6 | 1.4 | versicolor |
5.8 | 2.6 | 4.0 | 1.2 | versicolor |
5.0 | 2.3 | 3.3 | 1.0 | versicolor |
5.6 | 2.7 | 4.2 | 1.3 | versicolor |
5.7 | 3.0 | 4.2 | 1.2 | versicolor |
5.7 | 2.9 | 4.2 | 1.3 | versicolor |
6.2 | 2.9 | 4.3 | 1.3 | versicolor |
5.1 | 2.5 | 3.0 | 1.1 | versicolor |
5.7 | 2.8 | 4.1 | 1.3 | versicolor |
6.3 | 3.3 | 6.0 | 2.5 | virginica |
5.8 | 2.7 | 5.1 | 1.9 | virginica |
7.1 | 3.0 | 5.9 | 2.1 | virginica |
6.3 | 2.9 | 5.6 | 1.8 | virginica |
6.5 | 3.0 | 5.8 | 2.2 | virginica |
7.6 | 3.0 | 6.6 | 2.1 | virginica |
4.9 | 2.5 | 4.5 | 1.7 | virginica |
7.3 | 2.9 | 6.3 | 1.8 | virginica |
6.7 | 2.5 | 5.8 | 1.8 | virginica |
7.2 | 3.6 | 6.1 | 2.5 | virginica |
6.5 | 3.2 | 5.1 | 2.0 | virginica |
6.4 | 2.7 | 5.3 | 1.9 | virginica |
6.8 | 3.0 | 5.5 | 2.1 | virginica |
5.7 | 2.5 | 5.0 | 2.0 | virginica |
5.8 | 2.8 | 5.1 | 2.4 | virginica |
6.4 | 3.2 | 5.3 | 2.3 | virginica |
6.5 | 3.0 | 5.5 | 1.8 | virginica |
7.7 | 3.8 | 6.7 | 2.2 | virginica |
7.7 | 2.6 | 6.9 | 2.3 | virginica |
6.0 | 2.2 | 5.0 | 1.5 | virginica |
6.9 | 3.2 | 5.7 | 2.3 | virginica |
5.6 | 2.8 | 4.9 | 2.0 | virginica |
7.7 | 2.8 | 6.7 | 2.0 | virginica |
6.3 | 2.7 | 4.9 | 1.8 | virginica |
6.7 | 3.3 | 5.7 | 2.1 | virginica |
7.2 | 3.2 | 6.0 | 1.8 | virginica |
6.2 | 2.8 | 4.8 | 1.8 | virginica |
6.1 | 3.0 | 4.9 | 1.8 | virginica |
6.4 | 2.8 | 5.6 | 2.1 | virginica |
7.2 | 3.0 | 5.8 | 1.6 | virginica |
7.4 | 2.8 | 6.1 | 1.9 | virginica |
7.9 | 3.8 | 6.4 | 2.0 | virginica |
6.4 | 2.8 | 5.6 | 2.2 | virginica |
6.3 | 2.8 | 5.1 | 1.5 | virginica |
6.1 | 2.6 | 5.6 | 1.4 | virginica |
7.7 | 3.0 | 6.1 | 2.3 | virginica |
6.3 | 3.4 | 5.6 | 2.4 | virginica |
6.4 | 3.1 | 5.5 | 1.8 | virginica |
6.0 | 3.0 | 4.8 | 1.8 | virginica |
6.9 | 3.1 | 5.4 | 2.1 | virginica |
6.7 | 3.1 | 5.6 | 2.4 | virginica |
6.9 | 3.1 | 5.1 | 2.3 | virginica |
5.8 | 2.7 | 5.1 | 1.9 | virginica |
6.8 | 3.2 | 5.9 | 2.3 | virginica |
6.7 | 3.3 | 5.7 | 2.5 | virginica |
6.7 | 3.0 | 5.2 | 2.3 | virginica |
6.3 | 2.5 | 5.0 | 1.9 | virginica |
6.5 | 3.0 | 5.2 | 2.0 | virginica |
6.2 | 3.4 | 5.4 | 2.3 | virginica |
5.9 | 3.0 | 5.1 | 1.8 | virginica |
To select all columns except Species:
select(iris, -Species)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 |
4.9 | 3.0 | 1.4 | 0.2 |
4.7 | 3.2 | 1.3 | 0.2 |
4.6 | 3.1 | 1.5 | 0.2 |
5.0 | 3.6 | 1.4 | 0.2 |
5.4 | 3.9 | 1.7 | 0.4 |
4.6 | 3.4 | 1.4 | 0.3 |
5.0 | 3.4 | 1.5 | 0.2 |
4.4 | 2.9 | 1.4 | 0.2 |
4.9 | 3.1 | 1.5 | 0.1 |
5.4 | 3.7 | 1.5 | 0.2 |
4.8 | 3.4 | 1.6 | 0.2 |
4.8 | 3.0 | 1.4 | 0.1 |
4.3 | 3.0 | 1.1 | 0.1 |
5.8 | 4.0 | 1.2 | 0.2 |
5.7 | 4.4 | 1.5 | 0.4 |
5.4 | 3.9 | 1.3 | 0.4 |
5.1 | 3.5 | 1.4 | 0.3 |
5.7 | 3.8 | 1.7 | 0.3 |
5.1 | 3.8 | 1.5 | 0.3 |
5.4 | 3.4 | 1.7 | 0.2 |
5.1 | 3.7 | 1.5 | 0.4 |
4.6 | 3.6 | 1.0 | 0.2 |
5.1 | 3.3 | 1.7 | 0.5 |
4.8 | 3.4 | 1.9 | 0.2 |
5.0 | 3.0 | 1.6 | 0.2 |
5.0 | 3.4 | 1.6 | 0.4 |
5.2 | 3.5 | 1.5 | 0.2 |
5.2 | 3.4 | 1.4 | 0.2 |
4.7 | 3.2 | 1.6 | 0.2 |
4.8 | 3.1 | 1.6 | 0.2 |
5.4 | 3.4 | 1.5 | 0.4 |
5.2 | 4.1 | 1.5 | 0.1 |
5.5 | 4.2 | 1.4 | 0.2 |
4.9 | 3.1 | 1.5 | 0.2 |
5.0 | 3.2 | 1.2 | 0.2 |
5.5 | 3.5 | 1.3 | 0.2 |
4.9 | 3.6 | 1.4 | 0.1 |
4.4 | 3.0 | 1.3 | 0.2 |
5.1 | 3.4 | 1.5 | 0.2 |
5.0 | 3.5 | 1.3 | 0.3 |
4.5 | 2.3 | 1.3 | 0.3 |
4.4 | 3.2 | 1.3 | 0.2 |
5.0 | 3.5 | 1.6 | 0.6 |
5.1 | 3.8 | 1.9 | 0.4 |
4.8 | 3.0 | 1.4 | 0.3 |
5.1 | 3.8 | 1.6 | 0.2 |
4.6 | 3.2 | 1.4 | 0.2 |
5.3 | 3.7 | 1.5 | 0.2 |
5.0 | 3.3 | 1.4 | 0.2 |
7.0 | 3.2 | 4.7 | 1.4 |
6.4 | 3.2 | 4.5 | 1.5 |
6.9 | 3.1 | 4.9 | 1.5 |
5.5 | 2.3 | 4.0 | 1.3 |
6.5 | 2.8 | 4.6 | 1.5 |
5.7 | 2.8 | 4.5 | 1.3 |
6.3 | 3.3 | 4.7 | 1.6 |
4.9 | 2.4 | 3.3 | 1.0 |
6.6 | 2.9 | 4.6 | 1.3 |
5.2 | 2.7 | 3.9 | 1.4 |
5.0 | 2.0 | 3.5 | 1.0 |
5.9 | 3.0 | 4.2 | 1.5 |
6.0 | 2.2 | 4.0 | 1.0 |
6.1 | 2.9 | 4.7 | 1.4 |
5.6 | 2.9 | 3.6 | 1.3 |
6.7 | 3.1 | 4.4 | 1.4 |
5.6 | 3.0 | 4.5 | 1.5 |
5.8 | 2.7 | 4.1 | 1.0 |
6.2 | 2.2 | 4.5 | 1.5 |
5.6 | 2.5 | 3.9 | 1.1 |
5.9 | 3.2 | 4.8 | 1.8 |
6.1 | 2.8 | 4.0 | 1.3 |
6.3 | 2.5 | 4.9 | 1.5 |
6.1 | 2.8 | 4.7 | 1.2 |
6.4 | 2.9 | 4.3 | 1.3 |
6.6 | 3.0 | 4.4 | 1.4 |
6.8 | 2.8 | 4.8 | 1.4 |
6.7 | 3.0 | 5.0 | 1.7 |
6.0 | 2.9 | 4.5 | 1.5 |
5.7 | 2.6 | 3.5 | 1.0 |
5.5 | 2.4 | 3.8 | 1.1 |
5.5 | 2.4 | 3.7 | 1.0 |
5.8 | 2.7 | 3.9 | 1.2 |
6.0 | 2.7 | 5.1 | 1.6 |
5.4 | 3.0 | 4.5 | 1.5 |
6.0 | 3.4 | 4.5 | 1.6 |
6.7 | 3.1 | 4.7 | 1.5 |
6.3 | 2.3 | 4.4 | 1.3 |
5.6 | 3.0 | 4.1 | 1.3 |
5.5 | 2.5 | 4.0 | 1.3 |
5.5 | 2.6 | 4.4 | 1.2 |
6.1 | 3.0 | 4.6 | 1.4 |
5.8 | 2.6 | 4.0 | 1.2 |
5.0 | 2.3 | 3.3 | 1.0 |
5.6 | 2.7 | 4.2 | 1.3 |
5.7 | 3.0 | 4.2 | 1.2 |
5.7 | 2.9 | 4.2 | 1.3 |
6.2 | 2.9 | 4.3 | 1.3 |
5.1 | 2.5 | 3.0 | 1.1 |
5.7 | 2.8 | 4.1 | 1.3 |
6.3 | 3.3 | 6.0 | 2.5 |
5.8 | 2.7 | 5.1 | 1.9 |
7.1 | 3.0 | 5.9 | 2.1 |
6.3 | 2.9 | 5.6 | 1.8 |
6.5 | 3.0 | 5.8 | 2.2 |
7.6 | 3.0 | 6.6 | 2.1 |
4.9 | 2.5 | 4.5 | 1.7 |
7.3 | 2.9 | 6.3 | 1.8 |
6.7 | 2.5 | 5.8 | 1.8 |
7.2 | 3.6 | 6.1 | 2.5 |
6.5 | 3.2 | 5.1 | 2.0 |
6.4 | 2.7 | 5.3 | 1.9 |
6.8 | 3.0 | 5.5 | 2.1 |
5.7 | 2.5 | 5.0 | 2.0 |
5.8 | 2.8 | 5.1 | 2.4 |
6.4 | 3.2 | 5.3 | 2.3 |
6.5 | 3.0 | 5.5 | 1.8 |
7.7 | 3.8 | 6.7 | 2.2 |
7.7 | 2.6 | 6.9 | 2.3 |
6.0 | 2.2 | 5.0 | 1.5 |
6.9 | 3.2 | 5.7 | 2.3 |
5.6 | 2.8 | 4.9 | 2.0 |
7.7 | 2.8 | 6.7 | 2.0 |
6.3 | 2.7 | 4.9 | 1.8 |
6.7 | 3.3 | 5.7 | 2.1 |
7.2 | 3.2 | 6.0 | 1.8 |
6.2 | 2.8 | 4.8 | 1.8 |
6.1 | 3.0 | 4.9 | 1.8 |
6.4 | 2.8 | 5.6 | 2.1 |
7.2 | 3.0 | 5.8 | 1.6 |
7.4 | 2.8 | 6.1 | 1.9 |
7.9 | 3.8 | 6.4 | 2.0 |
6.4 | 2.8 | 5.6 | 2.2 |
6.3 | 2.8 | 5.1 | 1.5 |
6.1 | 2.6 | 5.6 | 1.4 |
7.7 | 3.0 | 6.1 | 2.3 |
6.3 | 3.4 | 5.6 | 2.4 |
6.4 | 3.1 | 5.5 | 1.8 |
6.0 | 3.0 | 4.8 | 1.8 |
6.9 | 3.1 | 5.4 | 2.1 |
6.7 | 3.1 | 5.6 | 2.4 |
6.9 | 3.1 | 5.1 | 2.3 |
5.8 | 2.7 | 5.1 | 1.9 |
6.8 | 3.2 | 5.9 | 2.3 |
6.7 | 3.3 | 5.7 | 2.5 |
6.7 | 3.0 | 5.2 | 2.3 |
6.3 | 2.5 | 5.0 | 1.9 |
6.5 | 3.0 | 5.2 | 2.0 |
6.2 | 3.4 | 5.4 | 2.3 |
5.9 | 3.0 | 5.1 | 1.8 |
For attribution, please cite this work as
Warin (2019, May 26). Thierry Warin, PhD: [R Course] Data Wrangling with R: Reshaping and Subsetting. Retrieved from https://warin.ca/posts/rcourse-datawranglingwithr-reshaping/
BibTeX citation
@misc{warin2019[r, author = {Warin, Thierry}, title = {Thierry Warin, PhD: [R Course] Data Wrangling with R: Reshaping and Subsetting}, url = {https://warin.ca/posts/rcourse-datawranglingwithr-reshaping/}, year = {2019} }